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We consider the possibility that simultaneously time and intrinsic length can be regarded
as discrete real parameters. We study the dynamics of the free particle. For both scattering
and bound states there are configurations where the energy is bounded from above
and from below even for positive wave-function solutions. For the case of continuous
evolution we show that the wave equation with a linear scalar coupling describes an
oscillator that has built-in hidden supersymmetry.
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Throughout the development of quantum mechanics, time traditionally ap-
pears as a continuous parameter. In Feynman’s path integration formulation for
a nonrelativistic particle, the probability amplitude for the particle to be at an
initial position at a timet = ti and at a final position att = tf is given by the am-
plitude sum over all paths connecting the initial and final positions, apart from
a normalization constant. It is clear that the positionx of the particle is not
treated on the same basis as its (real) timet : at a given time the path integra-
tion can be seen as over the whole range of eigenvalues of the position operator.
This thus points out the familiar difference betweenx as anoperatorand t as a
parameter.

This asymmetry is also clear in classical mechanics. The classical trajectory
of a particle is determined by the extremity of the action, which is functional to
the position. Whilex is the dynamical variable,t appears only as a continuous
parameter. By setting the variational derivative, we obtain the usual Lagrange
equation of motion, whose solution gives the classical path.

Our interest here is in the construction of a quantum mechanics with well-
specified equations of motion discrete time and discreteintrinsic space. This is
motivated by the notion that at some small scale, time and space would be really
discrete. This has echoes in theories such as relativistic quantum mechanics with a
time associated with the electron’s Compton wavelength, and string theory, where
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the Planck time sets a scale at which conventional notions of space and time break
down.

In particle physics, a widely adopted convention is to use as the fundamental
units certain physical quantities which areconstants of nature. Two constants of
this sort arec, the speed of light in vacuum, andh, Planck’s bar constant. We
usually choose these constants as two of the fundamental units of our systems. As
a third unit we use the second or the centimeter as the conventional and arbitrary
unit of time or length. This choice is guided by the fact that the theory under
discussion arises from an intimate relation between special relativity characterized
by the constantc and quantum mechanics characterized byh. The need for a
theory involving fundamental time and length units has been the subject of much
speculation in the past and present but it seems safe to say that we are far from
understanding the role of such units in existing theories.

There are several situations in physics where it is convenient or necessary to
replace the continuous time (temporal evolution) and the continuous length pa-
rameters with a discrete parameters. There have been various attempts to construct
classical and quantum mechanical theories on the basis of these notions, such
as the works of Lee (1983), Caldirola (1978), Kadyshevsky (1978; Kadyshevsky
and Mateev, 1981), Golden (1991), and Farias and Recami (1997). The works of
Yamamotoet al. (1995), Hashimotoet al. (1995), Klimek (1993), Jaroszkiewicz
and Norton (1997), Milburn (1991, 1998), and Bruce (2001) show that the subject
continues to receive attention.

The underlying postulate is that on sufficiently short-time steps the system
does not develop continuously under unitary evolution but rather in a sequence of
identical transformations. The inverse of this time step is the mean frequency of
the steps. If the time step and consequently the space step are small enough, the
evolution appears approximately continuous on laboratory time scales. To zeroth
order the Schr¨odinger equation is recovered.

Often we utilizel , m, s (mks or cgs), or ratherc, h, s (natural units), as basic
unit systems. Here we shall consider a different set, namely either (c, h, τ ) or (c, h,
λ) as unit systems, whereτ andλ are natural units of time and length, respectively.

Given the fact that time and space appear in the free particle Dirac operator
as derivatives with respect to time and space, we conjecture that a scalar term also
enters as a single partial derivative in the mass term of the Dirac operator. Notice
that, like the time derivative on the Dirac states9, this term is always present in
the Dirac hamiltonian, even in the rest mass frame system of the particle. Thus for
continuous evolutionthe modified Dirac equation should read

HD9(x, ρ) = −i hc

(
αi

∂

∂xi
+ β

g

∂

∂ρ

)
9(x, ρ) = i h

∂9(x, ρ)

∂t
, (1)

whereg is a dimensionless constant parameter to be specified in the sequel. The
variableρ is an intrinsic scalar coordinate under Lorentz transformations. This
coordinate is associated with the constant internal momentumgMc. Thus in Eq. (1)
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we are demanding aweakcondition upon9, namely[
−c2∇2−

(
c

g

)2
∂2

∂ρ2
+ ∂2

∂t2

]
9(x) = 0. (2)

For stationary states we have

9(x) = 9ED(x) = 90(p) e
i
h (p·x+gMcρ−EDt). (3)

Notice that Eq. (1) is formally equivalent to Feynman’s parametrization of the
Dirac equation (Aparicioet al., 1995; Feynman, 1951). However, hereρ is a
scalarcoordinate, not a timeparameter.

A direct consequence of Eq. (l) is thatρ is not a constant of the motion. In
fact, in the Heisenberg picture,

dρ

dt
= i

h
[HD, ρ] = cβ. (4)

From HD in Eq. (1) we find that{HD, β} = 2cpρ . Furthermore

[HD, β] = {HD, β} − 2βHD =
(
2cpρH−1

D − 2β
)

HD. (5)

Hence we get a differential equation forβ,

dβ

dt
= i

h
[HD, β] = −2i

h

(
β − cpρH−1

D

)
HD. (6)

Consequently, by defining

η ≡ β − cpρH−1
D , (7)

we obtain to first order a linear differential equation forη,

dη

dt
= −2i

h
ηHD, (8)

whose solution is (Barut and Bracken, 1981)

η(t) = η(0)e−
2i
h HDt = e+

2i
h HDtη(0). (9)

Therefore from (7) and (9) we find that

β(t) = cpρH−1
D +

(
β − cpρH−1

D

)
e−

2i
h HDt , (10)

so that
dρ

dt
= i

h
[HD, ρ] = cβ = c2 pρH−1

D + c
(
β − cpρH−1

D

)
e−

2i
h HDt , (11)

which we integrate to give

ρ(t) = ρ(0)+ c2 pρH−1
D t + i hc

2

(
β − cpρH−1

D

)
H−1

D e−
2i
h HDt , (12)

with ρ(0) a constant (operator) of integration. The second term of Eq. (12) grows
linearly with respect to timet by analogy to the classical result. The remaining
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contribution toρ describes a microscopic, high-frequencyZitterbewegungthat, in
the rest frame system, is characterized byh/2Mc, half the Compton wavelength
of the spin 1/2 particle, and an intrinsic frequency 2Mc2/h.

As an example of a bound state problem for Eq. (1), we shall consider the
minimal coupling prescription

pρ → pρ − i

(
h

λ2

)
γ5ρ. (13)

Thus Eq. (1) becomes

HD9(x, ρ) = −i hc

{
αi

∂

∂xi
+ β

[
∂

∂ρ
+
(

1

λ2

)
γ5ρ

]}
9(x, ρ) = i h

∂9(x, ρ)

∂t
,

(14)

with

9(x, ρ) = e
i
h (p·x−EDt)8(ρ). (15)

Notice that like in the case of the Dirac oscillator (Moshinsky and Szczepaniak,
1989), although the minimal coupling (13) is not hermitian, after replacing it into
Eq. (14), the hamiltonian remains hermitian. By replacing Eq. (15) into Eq. (14)
and applyingHD on the left-hand side of Eq. (14), the eigenvalue problem turns
out to be

E2
D8(ρ) =

{
c2p2+ c2

[
−h2 ∂

2

∂ρ2
+
(

h

λ2

)2

ρ2−
(

h

λ

)2

γ5

]}
8(ρ). (16)

Therefore the solutions for8 have the form

8+(ρ) =
(
ϕ (ρ)

ϕ (ρ)

)
, 8−(ρ) =

(
ϕ (ρ)

−ϕ (ρ)

)
. (17)

For the eigenfuctions8n of (16) we have that

ϕn(ρ) =
[
(a†)n/
√

n!
]
ϕ0 (ρ). (18)

Herea†, a are ladder operators for the one-dimensional harmonic oscillator, and
ϕ0(ρ) = (mω/πh)1/4 exp(−(mω/2h)ρ). By replacing Eq. (18) into Eq. (17), the
associated energy eigenvalues are then

E+ = ±
√

c2p2+ 2h2ω2

(
n+ 1

2

)
− h2ω2,

E− = ±
√

c2p2+ 2h2ω2

(
n+ 1

2

)
+ h2ω2, (19)



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475672 November 12, 2003 1:19 Style file version May 30th, 2002

Discrete Time and Intrinsic Length in Quantum Mechanics 2835

respectively. In the rest frame system (p = 0) and for positive energiesE+, E− ≥
0, E+ andE− take the same values (twofold degeneracy) except one, namely the
ground state which has the value [E+(p = 0)]n=0 = 0. Therefore there exists a
N = 1 hidden supersymmetry associated with this oscillator, analogous to the
case ofN = 2 supersymmetry found in the Dirac oscillator (Dixitet al., 1992;
Martinezet al., 1991). In fact from (16) we can write

H2
D = (c2p2+ 2hωHSS), (20)

with

HSS= {Q, Q†}, Q2 = (Q†)2 = 0, (21)

where

Q = 1

2
(hω) aσ−, Q† = 1

2
(hω)a†σ+. (22)

Hereσ± = σ1± iσ2 with σi the Pauli matrices.
Following Martinezet al. (1991), we construct generators of the su(2) Lie

algebra out of the superchargesQ and Q† and perform a Foldy–Wouthuysen
transformation to reduceHD to the form

H ′D = β(c2p2+ 2hωHSS)
1/2. (23)

This shows the stability of the Dirac vacuum.
For the case ofdiscrete evolutionwe can choose the time interval to be

δt = τ = h/Mc2, whereM is, for instance, the mass associated with the Compton
wavelength of a given spin 1/2 particlemc, or mp =

√
hc/G the Planck mass.

Sincec andh are natural constants, for the rest frame system Eq. (1) tells us that
ρ takes also discrete values with spacingδρ = λ = h/Mc. Thus we replace the
corresponding partial derivatives by finite differences. To have unitary evolution
(Bruce, 2001; Caldirola, 1978; Farias and Recami, 1997) we make use of the
so-called symmetric derivative:

∂9

∂ρ
→ δ9

δρ
= 9(ρ + δρ)−9(ρ − δρ)

2δρ
= h

λ
sin

(
gλ

h
Mc

)
9(x, ρ),

∂9

∂t
→ δ9

δt
= 9(t + δt)−9(t − δt)

2δt
= h

τ
sin

(
τ

h
E

)
9(x, ρ), (24)

with E = +
√

c2p2+ M2c4. Thus

HD9 =
[
−i hcα · ∇ + cβ

h

gλ
sin

(
gλ

h
Mc

)]
9 = ED9 = h

τ
sin

(
τ

h
E

)
9.

(25)
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Fig. 1. The functions Z(u) = 1+ sin2 u− u2 and Y(u) =
sin2 u/u2. They coincide only foru = 0, 1.

Next, from Eq. (25) we get the relation

E2
D = E2− M2c4+ M2c4

(
sing

g

)2

= M2c4 sin2

(
E

Mc2

)
, (26)

so that (
sing

g

)2

= 1+ sin2

(
E

Mc2

)
−
(

E

Mc2

)2

. (27)

Thus in principle the only possible value forg is either 0 or 1, as shown in Fig. 1.
To have a finite solution we chooseg = 1. Hence from Eq. (26) we find the

energy eigenvalues ofHD:

ED = h

τ
sin

(
τ

h
E

)
, (28)

for a state with eigenvalueE of H . Thus bound states have a maximum and a
minimum value for the energy of the excited states:E+D = ±h/τ = ±Mc2. Then
we can write

ED = Mc2 sin

(
E

Mc2

)
. (29)

Hence,ED reaches its maximum value for relativistic values ofE[∼ Mc2. (π/2)
Mc2], i.e., when creation and annihilation of particles take place. In such a situation
we must call for a (quantum) field theory treatment.

Particularly, for the case of the Dirac oscillator (Moshinsky and Szczepaniak,
1989), withω = Mc2/h, and fors states withE ≥ 0, we get

(ED)n = hω sin
[√

2(n+ 1)
]

, n ∈ Z+. (30)
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Therefore we obtain an energy-bounded oscillator,−hω ≤ (ED)n ≤ hω, i.e., there
exist solutions with negative energy eigenvalues, with unequal spacing between
energy levels, even for positive eigenstates ofH .

To conclude, for the case of continuous evolution, the alternative Dirac os-
cillator does exhibit supersymmetry and also ensures the stability of the Dirac
vacuum.

On small intrinsic time scales (e.g., the proper time associated with
Compton’s wavelength in relativistic quantum mechanics) we conjecture that the
system evolves by a sequence of real-time-like steps generated by the hamiltonian.
The Schr¨odinger equation is obtained tonth order in the expansion real parameter.
For both scattering and bound states with positive energy (negative energy) solu-
tions for the standard Dirac equation, Eq. (29) predicts the existence of negative
(positive) energies.

Finally, we want to briefly comment on the early paper by Snyder (1947;
Yang, 1965). He showed that Lorentz invariancedoesnotrequire that a four-
dimensional spacetime be continuous. To this end, he defines a Lorentz Lie algebra
and a generalized spacetime operators on homogeneous coordinates of a four-
dimensional De Sitter space, together with suitable energy-momentum operators.
It is clear that our approach is more straightforward: As shown in Bruce (2001), for
the canonical pairsxi , pj , andpi , pj , similar commutations relations can be found
for a basic relativistic quantum system, where the energy is given by Eq. (29).

We should mention that, as far as a discrete parameter has been used for time
evolution, our theory lacks of explicit Lorentz invariance.
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